
 0

Paper presentation on

EMBEDDED SYSTEMS
Smart Phone: An Embedded System for Universal Interactions

Author Info Sheet:
AUTHORS:

G.Raga Ranjitha B.Priyanka
II B.Tech II B.Tech
Email :ragaranjitha_g@yahoo.com Email: priyankab291@gmail.com
Contact No: 810681257, Contact no: 8121992442

INSTITUTION NAME:

 ST.MARY’S GROUP OF INSTITUTIONS GUNTUR
 GUNTUR

 (Affiliated to JNTU KAKINADA)

 1

 Abstract:

 In this paper, we present a system
architecture that allows users to interact with
embedded systems acted in their proximity using
Smart Phones. We have identified four models of
interaction between a Smart Phone and the
surrounding environment: universal remote
control, dual connectivity, gateway connectivity,
and peer-to-peer. Although each of these models
has different characteristics, our architecture
provides a unique framework for all of the
models. Central to our architecture are the hybrid
communication capabilities incorporated in the
Smart Phones. These phones have the unique
feature of incorporating short-range wireless
connectivity (e.g., Bluetooth) and Internet
connectivity (e.g., GPRS) in the same personal
mobile device. This feature together with
significant processing power and memory can
turn a Smart Phone into the only mobile device
that people will carry wherever they go.

 Introduction:

 Recent advances in
technology make it feasible to incorporate
significant processing power in almost every
device that we encounter in our daily life.
These embedded systems are heterogeneous,
distributed everywhere in the surrounding
environment, and capable of communicating
through wired or wireless interfaces. For a
number of years, visionary papers [21, 18]
have presented a picturesque computerized
physical world with which we can potentially
interact faster and in a simpler fashion.
People, however, are not yet taking
advantage of this ubiquitous computing
world. Despite all the computing power lying
around, most of our daily interactions with
the surrounding environment are still
primitive and far from the ubiquitous
computing vision. Our pockets and bags are
still jammed with a bunch of keys for the
doors we have to open/close daily (they did
not change much since the Middle Ages), the
car key or remote, access cards, credit cards,

and money to pay for goods. Any of these
forgotten at home can turn the day into a
nightmare. If we travel, we also need maps
and travel guides, coins to pay the parking in
the city, and tickets to take the train or
subway. In addition, we are always carrying
our mobile phone, which for some
mysterious reason is the least likely to be left
at home. When we finally arrive home or at
the hotel, we are “greeted” by several remote
controls eager to test our intelligence. All
these items are absolutely necessary for us to
properly interact with our environment. The
problem is that there are too many of them,
they are sometimes heavy, and we will likely
accumulate more and more of them as our
life go on, requiring much larger pockets.

 For this problem, the
community does not lack innovative
solutions that address some of its aspects
(e.g., wireless micro servers [15], electronic
payment methods [1, 8], and digitaldoor keys
[13]). What is missing is a simple, universal
solution, which end-users are likely to accept
easily. Ideally, we would like to have a single
device that acts as both personal server [20]
and personal assistant for remote interaction
with embedded systems located in proximity
of the user. This device should be
programmable and support dynamic software
extensions for interaction with newly
encountered embedded systems (i.e.,
dynamically loading new interfaces). To
simplify its acceptance by society, it should
be a device that is already carried by people
wherever they go.

 We believe that Smart Phones
are the devices that have the greatest chance
of successfully becoming universal remote
controls for people to interact with various
devices from their surrounding environment;
they will also replace all the different items
we currently carry in our pockets. Smart
Phone is an emerging mobile phone
technology that supports Java program

 1

execution and provides both short range
wireless connectivity (Bluetooth) and cellular
network connectivity through which the
Internet can be accessed.

 In this paper, we present a
system architecture that allows users to
interact with embedded systems located in
their proximity using a Smart Phone. We
have identified four models of interaction
between a Smart Phone and the surrounding
environment: universal remote control, dual
connectivity, gateway connectivity, and peer-
to-peer. Although each of these models has
different characteristics, our architecture
provides a unique framework for all the
models. Central to our architecture are the
hybrid communication capabilities
incorporated in the Smart Phones which
allow them to interact with the close-by
environment through short-range wireless
networking and with the rest of the world
through the Internet over cellular links. This
feature together with significant processing
power and memory can turn a Smart Phone
into the long awaited universal personal
assistant that can make our daily life much
simpler.

 An Embedded System:
 The embedded system is a combination
of computer hardware, software and, perhaps,
additional mechanical parts design to perform
a specific function. A good example is an
automatic washing machine or microwave
oven .Such a system is in direct contrast to a
personal computer, which not designed to do
only a specific task. The PC aids you in
drafting a letter, in computing at a faster rate
in chatting with friends, and so on, but an
embedded system is designed to do a specific
task with in a given time frame, repeatedly,
endlessly, with or without human interaction.
A PC is made up of numerous embedded
systems, such as a keyboard, hard drive etc.
The function of a simple modem is to convert
analogue signals to digital signals, and vice
versa. This means it must have a certain
amount of logic to perform that process in
time and again endlessly.

 It is important to note that all
embedded systems all embedded systems do
not have same hardware and software, which
is why these systems perform varied tasks.
It’s even possible to have an embedded
system that does not contain any processor
and corresponding software to run through it.
In such system, called hardwired systems, the
hardware and software is replaced with
integrated circuitry that performs a same
function .However, a lot of flexibility is lost
when applications are implemented this way.
It is much easier to change the software code
than to redevelop the hardware, for bringing
about the small changes in application for
which the system has been designed.

 Embedded Hardware:
 All embedded systems need a
micro processor, and the kinds of
microprocessors using them are quite varied.
A list of some of the common micro
processor families are ZILOG Z8 family,
INTEL 8051/80188/X86 family. An
embedded system also needs memory for two
purposes – to store its program, and to store
its data. Embedded systems store data and
programs in different memories .This is
simply because embedded system does not
have an hard drive and the program must be
stored in memory, even when the power is
turned off .This special memory that
remembers program even without power, is
called ROM Very often this systems have a
serial port I/O interfaces, or hard ware to
interact with sensors.

 So an embedded system has a
micro processor or micro controller for

 2

processing information, memory for storing
embedded software programs and data and
I/O interfaces for external interfaces. The
functional diagram is given above.

 The processor uses the address
bus to select a specific memory location
within the memory sub system or a specific
peripheral chip. The data base is used to
transfer data between the processor and
memory sub system or peripheral devices the
control bus provides timing signals to
synchronize the flow of data between the
processor and memory sub system or
peripheral devices.

 Embedded Software:

 C has become the language of

choice for embedded programmers. The
greatest strength of C is that it gives
embedded programmers an extraordinary
degree of direct hardware control without
sacrificing the benefits of high level
languages. Compilers and cross compilers are
also available for almost every processor
with C.

 Any source code written in C or C++
or assembly must be converted into an

executable image that can be loaded onto a
ROM chip. The process of converting the
source code representation of your embedded
software into an executable image involves
three distinct steps, and the system or
computer on which these processes are
executed is called Host computer.

 First, each of the source files that make
an embedded application must be compiled
or assembled into distinct object files.
Second, all of the object files that result first
step must be linked into a final object file
called the relocatable program. Finally
physical memory address must be assigned to
relocatable program. The result of the third
step is a file that contains an executable
image that is ported on to the ROM chip.
This ROM chip, along with the processor and
other devices and interfaces, makes an
embedded system run

 There are some very basic
differences between conventional
programming and embedded programming.
First, each target platform is unique. Even if
the processor architecture is the same, the I/O
interfaces or sensors or activators may differ.
Second, there is a difference in the
development and debugging of applications.

 Smart Phones Technology:

 With more than a billion
mobile phones being carried around by
consumers of all ages, the mobile phone has
become the most pervasive pocket-carried
device. We are beginning to see the
introduction of Smart Phones, such as Sony
Ericsson P800/P900 [9] and Motorola A760
[10] (Figure 1), as a result of the convergence
of mobile phones and PDA devices. Unlike
traditional mobile phones, which have
limited processing power and act merely as
“dumb” conduits for passing voice or data
between the cellular network and end users,
Smart Phones combine significant computing
power with memory, short-range wireless
interfaces (e.g., Bluetooth), Internet
connectivity (over GPRS), and various input-

 3

output components (e.g., high-resolution
color touch screens, digital cameras, and
MP3 players). Sony Ericsson P800/P900 runs
Symbian OS [12], an operating system
specifically designed for resource constrained
devices such as mobile phones. It also comes
equipped with two versions of Java
technology: Personal Java [11] and J2ME
CLDC/MIDP [2]. Additionally, it supports
C++ which provides low level access to the
operating system and the Bluetooth driver.
The phone has 16MB of internal memory and
up to 128MB external flash memory.
Motorola A760 has a Motorola i250 chip for
communication, Intel’s 200 MHz PXA262
chip for computation, and 256MB of RAM
memory. It runs a version of MontaVista
Linux and comes with Java J2ME support
[2].Bluetooth [7] is a low-cost, low-power
standard for wireless connectivity. Today, we
can find Bluetooth chips embedded in PCs,
laptops, digital cameras, GPS devices, Smart
Phones, and a whole range of other electronic
devices. Bluetooth supports point-to-point
and point-to-multipoint connections. We can
actively connect a Bluetooth device to up to
seven devices simultaneously. Together, they
form an ad hoc network, called Piconet.
Several piconets can be linked to form a
Scatter net. Another important development
for the mobile phone technology is the
introduction of General Packet Radio Service
(GPRS) [3], a packet switching technology
over the current GSM cellular networks.
GPRS is offered as a no voice value-added
service that allows data to be sent and
received across GSM cellular networks at a
rate of up to 171.2kbps, and its goal is to
supplement today’s Circuit

 Example of Smart Phones: Sony
Ericsson P800 (Left) and Motorola A760
(Right)

 Smart Phone Interaction Models:
A Smart Phone can be used to interact

with the surrounding environment in
different ways. We have identified four
interaction models: universal remote control,
dual connectivity, gateway connectivity, and
peer-to-peer. With these models, a Smart
Phone can be used to execute applications
from as simple as remotely adjusting various
controls of home appliances or opening smart
locks to complex applications such as
automatically booking a cab or
ordering/paying in a restaurant using an ad
hoc network of mobile phones to connect to
the cashier’s computer.

Universal Remote Control Interaction
Model. Peer-to-Peer Interaction Model

Universal Remote Control Model:

 The Smart Phone can act as a
universal remote control for interaction with
embedded systems located in its proximity.
To support proximity-aware interactions,
both the Smart Phone and the embedded
systems with which the user interacts must
have short-range wireless communication
capabilities. Figure 2 illustrates such

 4

interactions using Bluetooth. Due to its low-
power, low- cost features; Bluetooth is the
primary candidate for the short-range
wireless technology that will enable
proximity-aware communication.

 Since embedded systems with
different functionalities can be scattered
everywhere, a discovery protocol will allow
Smart Phones to learn the identity and the
description of the embedded systems located
in their proximity. This protocol can work
either automatically or on-demand, but the

information about the devices currently
located in user’s proximity is displayed only
upon user’s request. Each embedded system
should be able to provide its identity
information (unique to a device or to a class
of devices) and a description of its basic
functionality in a human-understandable
format. This model works well as long as the
user has the interfaces for interacting with the
embedded systems preinstalled on the phone.
An alternative, more flexible, solution is to
define a protocol that allows a Smart Phone
to learn the interfaces from the embedded
systems themselves. The problem with this
idea is that many embedded systems may not
be powerful enough to run complex software
that implements such protocols. In the
following, we describe a second model of
interaction that solves this problem.

 Gateway Connectivity Model :
 Many pervasive applications
assume wireless communication through the
IEEE 802.11 family of protocols. These
protocols allow for a significant increase in

the communication distance and bandwidth
compared to Bluetooth. Using these
protocols, the communication range is 250m
or more, while Bluetooth reaches only 10m.
The bandwidth is also larger, 11-54Mbps
compared to less than 1Mbps for Bluetooth.
Additionally, many routing protocols for
mobile adhoc networks based 802.11 already
exist [19, 16]. The disadvantage of 802.11 is
that it consumes too much energy, and
consequently, it drains out the mobile
devices’ batteries in a very short period of
time. With the current state of the art, we do

not expect to have 802.11 network interfaces
embedded in Smart Phones or other resource
constrained embedded systems that need to
run on batteries for a significant period of
time (e.g., several hours or even days). More
powerful systems, however, can take
advantage of the 802.11 benefits and create
mobile ad hoc networks. In such a situation, a
user would like to access data and services
provided by these networks from its Smart
Phone.

The Gateway Connectivity Interaction
Model.

 To succeed, a gateway device has
to perform a change of protocol from
Bluetooth to 802.11 and vice-versa. Many
places in a city (e.g., stores, theaters,
restaurants) can provide such gateway
stations together with 802.11 hotspots. Figure
4 illustrates this communication model and
also presents an application that can be built
on top of it. Let us assume a scenario where
people want to book nearby cabs using their

 5

Smart Phones. Instead of calling a taxi
company or ”gesturing” to book a cab, a
client can start an application on her Smart
Phone that seamlessly achieves the same
goal. Hence, the client is just one-click away
from booking a cab. In this scenario, each
cab is equipped with 802.11 wireless
networking and GPS devices, and the entire
booking process is completely decentralized.
To join the mobile adhoc network created by
the cabs, a Smart Phone needs to connect to a
gateway station that performs a translation of
protocols from Bluetooth to 802.11 and vice-
versa.

 Peer-to-Peer Model :
 The Smart Phones can also
communicate among themselves (or with
other Bluetooth-enabled devices) in a
multihop, peer-to-peer fashion, similar to
mobile ad hoc networks. For instance, this
model allows people to share music and
pictures with others even if they are not in the
proximity of each other. Figure depicts yet
another example of this model. A group of
friends having dinner in a restaurant can use
their Smart Phones to execute a program that
shares the check. One phone initiates this
process, an ad hoc network of Smart Phones
is created, and finally the payment message
arrives at the cashier.

The Peer-to-Peer Interaction Model.
System Architecture:
 Our system architecture for
universal interaction consists of a common

Smart Phone software architecture and an
interaction protocol. This protocol allows
Smart Phones to interact with the
surrounding environment and the Internet.
Figure shows the Smart Phone software
architecture. In the following, we briefly
describe the components of the software
architecture.

Smart Phone Software Architecture.
. Bluetooth Engine is responsible for
communicating with the Bluetooth-enabled
embedded systems. It is composed of sub-
components for device discovery and
sending/receiving data. The Bluetooth Engine
is a layer above the Bluetooth stack and
provides a convenient Java API for accessing
the Bluetooth stack.

 Internet Access Module carries out the
communication between the Smart Phone and
various Internet servers. It provides a well-
defined API that supports operations specific
to our architecture (e.g., downloading an
interface). The protocol of communication is
HTTP on top of GPRS.

 Proximity Engine is responsible for
discovering the embedded systems located
within the Bluetooth communication range.
Each time the user wants to interact with one
of these systems, and an interface for this
system is not available locally (i.e., a miss in
the Interface Cache), the Proximity Engine is
responsible from downloading such an
interface. If the embedded system has enough

 6

computing power and memory, the interface
can be downloaded directly from it.
Otherwise, the Proximity Engine invokes the
Internet Access Module to connect to a web
server and download the interface. The
downloaded interface is stored in the
Interface Cache for later reuse. Once this is
done, the Proximity Engine informs the
Execution Engine to dispatch the downloaded
interface for execution. All further
communication between the Smart Phone and
the embedded system happens as a result of
executing this interface.

 Execution Engine is invoked by the
Proximity Engine and is responsible for
dispatching interface programs for execution
over the Java virtual machine. These
programs interact with the Bluetooth Engine
to communicate with the embedded systems
or with other Smart Phones They may also
interact with the Internet Access Module to
communicate with Internet servers. For
instance, the interface programs may need to
contact a server for security related actions or
to download necessary data in case of a miss
in the Personal Data Storage.

 Interface Cache stores the code of the
downloaded interfaces. This cache avoids
downloading an interface every time it is
needed. An interface can be shared by an
entire class of embedded systems (e.g., Smart
Locks, or Microwaves). Every interface has
an ID (which can be the ID of the embedded
system or the class of embedded systems it is
associated with). This ID helps in
recognizing the cached interface each time it
needs to be looked up in the cache.
Additionally, each interface has an associated
access handler that is executed before any
subsequent execution of the interface. This
handler may define the time period for which
the interface should be cached, how and
when the interface can be reused, or the
permissions to access local resources. The
user can set the access handler’s parameters
before the first execution of the interface.

 Personal Data Storage acts as a cache for
“active data”, similar to Active Cache [14]. It
stores data that needs to be used during the
interactions with various embedded systems.
Examples of such data include digital door
keys and electronic cash. Each data item
stored in this cache has three associated
handlers: access handler, miss handler, and
eviction handler. Each time an interface
needs some data, it checks the Personal Data
Storage. If the data is available locally (i.e.,
hit), the access handler is executed, and the
program goes ahead. For instance, the access
handler may check if this data can be shared
among different interfaces. If the data is not
available locally (i.e., miss), the miss handler
instructs the Internet Access Module to
download the data from the corresponding
Internet server. The eviction handler defines
the actions to be taken when data is evicted
from the cache. For instance, electronic cash
can be sent back to the bank at eviction time.

 Below figure shows the interaction
protocol that takes place when a Smart Phone
needs to interact with an embedded system.
We consider that any embedded system is
registered with a trusted web server (this web
server can be physically distributed on
multiple computers). At registration, the web
server assigns a unique ID and a URL to the
device. All the information necessary to
interact with the device along with a user
interface is stored at that URL. This URL
may be common for an entire class of
embedded systems. The user invokes the
Proximity Engine each time she needs to
interact with a device located in the
proximity. Once the embedded systems in the
proximity have been identified, the user can
choose the one she wants to interact with.
Consequently, a request is sent to the
embedded system to provide its ID and URL.
Upon receiving the ID and URL of the
embedded system, the Smart Phone executes
the access control handler, and then, loads
and executes the interface. In case of a miss
in the Interface Cache, the interface needs to
be downloaded on the phone either from the
web server or from the embedded system

 7

itself. An inter face downloaded from an
embedded system is untrusted and is not
allowed to access local resources (i.e., this is
a sandbox model of execution, where the
interface can only execute safe instructions
on the phone). The interfaces downloaded
from the web server are trusted; they are
assumed to be verified before being
distributed by the server. Each time a Smart
Phone requests an interface from the web
server, it has to send the interface ID and the
URL provided by the embedded system. It
also sends it’s ID (stored in the Personal Data
Storage). The permission to download an
interface is subject to access control enforced
based on the Smart Phone ID and,
potentially, other credentials presented by the
user. Once the access is granted, the web
server responds with the interface code.

 Smart Phone
Interaction Protocol

Status and Future Work:

 In this section, we briefly outline
the current status and several open issues that
we have to overcome in order to implement
our system architecture. We are in the
process of building the system architecture
on top of Ericsson’s P800/900 phones. Our
first step consists of implementing the basic
architecture for the universal remote control
interaction model. The architecture
components to be developed for this model
are the Bluetooth Engine and Proximity

Engine along with a simple Execution engine
over Java. We have partially implemented the
Bluetooth Engine and have written and tested
a few sample programs to test the feasibility
of connecting a phone to another phone or to
a Bluetooth-enabled laptop. Besides directly
connecting to Bluetooth-enabled devices, a
phone can also connect to a LAN. We are in
the process of investigating the feasibility of
using the Bluetooth LAN profile to connect
the phone to a LAN through a Bluetooth
access point. Until recently, the commercially
available Bluetooth chips have been working
well for one-hop communication, but their
scatter net capabilities have not been mature
enough to support multi-hop communication
as needed in our peer-to-peer interaction
model. Currently, there are products [4],
however, whose scatter net capabilities have
been successfully tested. We envision that
multi-hop communication in ad hoc networks
will take place either over Bluetooth or over
802.11 depending on the trade-offs between
the battery power consumption and
communication range. Our system
architecture supports both situations through
the peer-to-peer model and the gateway
model, respectively. To connect a Smart
Phone to the Internet over GPRS, we can use
HTTP or TCP. A decision regarding the
protocol used for Internet access needs to
consider the trade-offs between the simplicity
provided by HTTP and the flexibility and
efficiency provided by TCP. Although our
architecture provides a level of security by
obtaining interface code and confidential data
from a trusted web server, many issues
related to security and privacy still need to be
addressed. For instance, we need to
investigate different lightweight encryption
algorithms that work on resource constrained
devices to counter eavesdropping without a
serious overhead. So far we have assumed
that the personal information of the user,
including confidential data, would be stored
on the Smart Phone. In such a situation,
losing the Smart Phone could pose a serious
security threat to the owner. The data stored
on the phone should be made inaccessible to
anyone but the phone owner. A simple

 8

password scheme is insufficient because
entering a password every time confidential
data is accessed could be a major turn off for
the users. We plan to investigate both
software protection mechanisms and
hardware solutions..
Conclusions:

 In this paper, we have argued for
turning the Smart Phone into the only device
that people carry in their pockets wherever
they go. The Smart Phone can be used as
both personal server that stores or downloads
data that its user needs and personal assistant
for remote interaction with embedded
systems located in the user’s proximity. To
achieve this vision, we have presented
unified system architecture for different
models of interaction between a Smart Phone
and the surrounding environment. Central to
this universal interaction architecture is the
dual connectivity feature of Smart Phones,
which allows them to interact with the close-
by environment through short-range wireless
networking and with the rest of the world
through the Internet over cellular links.

